Periodic and heteroclinic orbits for a periodic hamiltonian system
نویسندگان
چکیده
منابع مشابه
Symmetric periodic orbits near a heteroclinic loop
In this paper we consider vector fields in R that are invariant under a suitable symmetry and that posses a “generalized heteroclinic loop” L formed by two singular points (e and e−) and their invariant manifolds: one of dimension 2 (a sphere minus the points e and e−) and one of dimension 1 (the open diameter of the sphere having endpoints e and e−). In particular, we analyze the dynamics of t...
متن کاملPeriodic orbits near heteroclinic cycles in a cyclic replicator system.
A species is semelparous if every individual reproduces only once in its life and dies immediately after the reproduction. While the reproduction opportunity is unique per year and the individual's period from birth to reproduction is just n years, the individuals that reproduce in the ith year (modulo n) are called the ith year class, i = 1, 2, . . . , n. The dynamics of the n year-class syste...
متن کاملNumerical continuation of families of heteroclinic connections between periodic orbits in a Hamiltonian system
This paper is devoted to the numerical computation and continuation of families of heteroclinic connections between hyperbolic periodic orbits of a Hamiltonian system. We describe a method that requires the numerical continuation of a nonlinear system that involves the initial conditions of the two periodic orbits, the linear approximations of the corresponding manifolds and a point in a given ...
متن کاملPeriodic Orbits of Hamiltonian Systems
5 The Variational principles and periodic orbits 21 5.1 Lagrangian view point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2 Hamiltonian view point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3 Fixed energy problem, the Hill’s region . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4 Continuation of periodic orbits as critical p...
متن کاملNear strongly resonant periodic orbits in a Hamiltonian system.
We study an analytic Hamiltonian system near a strongly resonant periodic orbit. We introduce a modulus of local analytic classification. We provide asymptotic formulae for the exponentially small splitting of separatrices for bifurcating hyperbolic periodic orbits. These formulae confirm a conjecture formulated by V. I. Arnold in the early 1970s.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 1989
ISSN: 0294-1449
DOI: 10.1016/s0294-1449(16)30314-6